Non Forbes

Definition of pixels for the world's biggest photos

I shoot lots of large panoramas, and the arrival of various cheaper robotic mounts to shoot them, such as the Gigapan Epic Pro and the Merlin/Skywatcher (which I have) has resulted in a bit of a "mine's bigger than yours" contest to take the biggest photo. Some would argue that the stitched version of the Sloane Digital Sky survey, which has been rated at a trillion pixels, is the winner, but most of the competition has been on the ground.

Topic: 

Blind man drives, sort of, with a robocar

A release from the National Federation for the Blind reports a blind person driving and avoiding obstacles on the Daytona speedway. They used a car from the TORC team at Virginia Tech, one of the competitors in the Darpa Grand Challenges. In effect, the blind driver replaced the "drive by wire" component of a robocar with a more intelligent and thinking human also able to feel acceleration and make some judgements.

Topic: 

Another pedal-powered monorail: Skyride

Last year I wrote about an interesting but simple pedal powered monorail/PRT system called Shweeb which had won a prize/investment from Google. Recent announcements show they are not alone in this concept. Scott Olson, the original developer of the Rollerblade, has founded a company called Skyride Technologies to build their own version of a pedal powered suspended monorail.

Working on Robocars at Google

As readers of this blog surely know, for several years I have been designing, writing and forecasting about the technology of self-driving "robocars" in the coming years. I'm pleased to announce that I have recently become a consultant to the robot car team working at Google.

Of course all that work will be done under NDA, and so until such time as Google makes more public announcements, I won't be writing about what they or I are doing. I am very impressed by the team and their accomplishments, and to learn more I will point you to my blog post about their announcement and the article I added to my web site shortly after that announcement. It also means I probably won't blog in any detail about certain areas of technology, in some cases not commenting on the work of other teams because of conflict of interest. However, as much as I enjoy writing and reporting on this technology, I would rather be building it.

My philosophical message about Robocars I have been saying for years, but it should be clear that I am simply consulting on the project, not setting its policies or acting as a spokesman.

My primary interest at Google is robocars, but many of you also know my long history in online civil rights and privacy, an area in which Google is often involved in both positive and negative ways. Indeed, while I was chairman of the EFF I felt there could be a conflict in working for a company which the EFF frequently has to either praise or criticise. I will be recusing myself from any EFF board decisions about Google, naturally.

My phone should know when I start a trip

Every day I get into my car and drive somewhere. My mobile phone has a lot of useful apps for travel, including maps with traffic and a lot more. And I am usually calling them up.

I believe that my phone should notice when I am driving off from somewhere, or about to, and automatically do some things for me. Of course, it could notice this if it ran the GPS all the time, but that's expensive from a power standpoint, so there are other ways to identify this:

TVs should be universal, not remote controls

Like me, you probably have a dozen "universal" remote controls gathered over the years. With each new device and remote you go through a process to try to figure out special codes to enter into the remote to train it to operate your other devices. And it's never very good, except perhaps in the expensive remotes with screens and macros.

Topic: 

Comparing electricity to a gallon of gasoline

The "burning" question for electric cars is how to compare them with gasoline. Last month I wrote about how wrong the EPA's 99mpg number for the Nissan Leaf was, and I gave the 37mpg number you get from the Dept. of Energy's methodology. More research shows the question is complex and messy.

So messy that the best solution is for electric cars to publish their efficiency in electric terms, which means a number like "watt-hours/mile." The EPA measured the Leaf as about 330 watt-hours/mile (or .33 kwh/mile if you prefer.) For those who really prefer an mpg type number, so that higher is better, you would do miles/kwh.

Then you would get local power companies to publish local "kwh to gallon of gasoline" figures for the particular mix of power plants in that area. This also is not very easy, but it removes the local variation. The DoE or EPA could also come up with a national average kwh/gallon number, and car vendors could use that if they wanted, but frankly that national number is poor enough that most would not want to use it in the above-average states like California. In addition, the number in other countries is much better than in the USA.

The local mix varies a lot. Nationally it's about 50% coal, 20% gas, 20% nuclear and 10% hydro with a smattering of other renewables. In some places, like Utah, New Mexico and many midwestern areas, it is 90% or more coal (which is bad.) In California, there is almost no coal -- it's mostly natural gas, with some nuclear, particularly in the south, and some hydro. In the Pacific Northwest, there is a dominance by hydro and electricity has far fewer emissions. (In TX, IL and NY, you can choose greener electricity providers which seems an obvious choice for the electric-car buyer.)

Understanding the local mix is a start, but there is more complexity. Let's look at some of the different methods, staring with an executive summary for the 330 wh/mile Nissan Leaf and the national average grid:

  • Theoretical perfect conversion (EPA method): 99 mpg-e(perfect)
  • Heat energy formula (DoE national average): 37 mpg-e(heat)
  • Cost of electricity vs. gasoline (untaxed): 75 mpg-e($)
  • Pollution, notably PM2.5 particulates: Hard to calculate, could be very poor. Hydrocarbons and CO: very good.
  • Greenhouse Gas emissions, g CO2 equivalent: 60 mpg-e(CO2)

Designing a better, faster, secure, vastly cheaper airport with proto-robocars

Like just about everybody, I hate the way travel through airports has become. Airports get slower and bigger and more expensive, and for short-haul flights you can easily spend more time on the ground at airports than you do in the air. Security rules are a large part of the cause, but not all of it.

In this completely rewritten essay, I outline the design on a super-cheap airport with very few buildings, based on a fleet of proto-robocars. I call them proto models because these are cars we know how to build today, which navigate on prepared courses on pavement, in controlled situations and without civilian cars to worry about.

In this robocar airport, which I describe first in a narrative and then in detail, there are no terminal buildings or gates. Each plane just parks on the tarmac and robotic stairs and ramps move up and dock to all its doors. (Catering trucks, fuel trucks and luggage robots also arrive.) The passengers arrive in a perfect boarding order in robocars that dock at the ramps/steps to let them get on the plane through every entrance. Luggage is handled by different robots, and is checked and picked up not in carousels and check-in desks, but at curbs, parking lots, rental car centers and airport hotels.

The change is so dramatic that (even with security issues) people could arrive at airports for flights under 20 minutes before take-off, and get out even faster. Checked luggage would add time, but not much. I also believe you could build a high capacity airport for a tiny fraction of the cost of today's modern multi-billion dollar edifices. I believe the overall experience would also be more pleasant and more productive for all.

This essay is a long one, but I am interested in feedback. What will work here, and what won't? Would you love to fly through this airport or hate it? This is an airport designed not to give you a glorious building in which to wait but to get you through it without waiting most of the time.

The airport gets even better when real robocars, that can drive on the streets to the airport, come on the scene.

Give me your feedback on The Robocar Airport.

Key elements of the design include:

Where will 3-D cameras like Kinect lead?

This year, I bought Microsoft Kinect cameras for the nephews and niece. At first they will mostly play energetic X-box games with them but my hope is they will start to play with the things coming from the Kinect hacking community -- the videos of the top hacks are quite interesting. At first, MS wanted to lock down the Kinect and threaten the open source developers who reverse engineered the protocol and released drivers. Now Microsoft has official open drivers.

Drivers cost 1.7 million person-years every year in the USA, 3rd of all major causes

I've written frequently about how driving fatalities are the leading cause of death for people from age 5 to 45, and one of the leading overall causes of death. I write this because we hope that safe robocars, with a much lower accident rate, can eliminate much of this death.

Topic: 

Pages