Does Tesla new home storage battery suggest an amazing breakthrough?
Submitted by brad on Sat, 2015-02-14 11:52There has been lots of buzz over announcements from Tesla that they will sell a battery for home electricity storage manufactured in the "gigafactory" they are building to make electric car batteries. It is suggested that 1/3 of the capacity of the factory might go to grid storage batteries.
This is very interesting because, at present, battery grid storage is not generally economical. The problem is the cost of the batteries. While batteries can be as much as 90% efficient, they wear out the more you use and recharge them. Batteries vary a lot in how many cycles they will deliver, and this varies according to how you use the battery (ie. do you drain it all the way, or use only the middle of the range, etc.) If your battery will deliver 1,000 cycles using 60% of its range (from 20% to 80%) and costs $400/kwh, then you will get 600kwh over the lifetime of a kwh unit, or 66 cents per kwh (presuming no residual value.) That's not an economical cost for energy anywhere, except perhaps off-grid. (You also lose a cent or two from losses in the system.) If you can get down to 9 cents/kwh, plus 1 cent for losses, you get parity with the typical grid. However, this is modified by some important caveats:
- If you have a grid with very different prices during the day, you can charge your batteries at the night price and use them during the daytime peak. You might pay 7 cents at night and avoid 21 cent prices in the day, so a battery cost of 14 cents/kwh is break-even.
- You get a backup power system for times when the grid is off. How valuable that is varies on who you are. For many it's worth several hundred dollars. (But not too many as you can get a generator as backup and most people don't.)
- Because battery prices are dropping fast, a battery pack today will lose value quickly, even before it physically degrades. And yes, in spite of what you might imagine in terms of "who cares, as long as it's working," that matters.
The magic number that is not well understood about batteries is the lifetime watt-hours in the battery per dollar. Lots of analysis will tell you things about the instantaneous capacity in kwh, notably important numbers like energy density (in kwh/kg or kwh/litre) and cost (in dollars/kwh) but for grid storage, the energy density is almost entirely unimportant, the cost for single cycle capacity is much less important and the lifetime watt-hours is the one you want to know. For any battery there will be an "optimal" duty cycle which maximizes the lifetime wh. (For example, taking it down to 20% and then back up to 80% is a popular duty cycle.)
The lifetime watt hour number is:
Number of cycles before replacement * watt-hours in optimum cycle
The $/lifetime-wh is:
(Battery cost + interest on cost over lifetime - battery recycle value) / lifetime-wh
(You must also consider these numbers around the system, because in addition to a battery pack, you need chargers, inverters and grid-tie equipment, though they may last longer than a battery pack.)
I find it odd that this very important number is not widely discussed or published. One reason is that it's not as important for electric cars and consumer electronic goods.
Electric car batteries
In electric cars, it's difficult because you have to run the car to match the driver's demands. Some days the driver only goes 10 miles and barely discharges before plugging in. Other days they want to run the car all the way down to almost empty. Because of this each battery will respond differently. Taxis, especially Robotaxis, can do their driving to match an optimum cycle, and this number is important for them.
A lot of factors affect your choice of electric car battery. For a car, you want everything, and in fact must just do trade-offs.
- Cost per kwh of capacity -- this is your range, and electric car buyers care a great deal about that
- Low weight (high energy density) is essential, extra weight decreases performance and range
- Modest size is important, you don't want to fill your cargo space with batteries
- Ability to use the full capacity from time to time without damaging the battery's life much is important, or you don't really have the range you paid for and you carry its weight for nothing.
- High discharge is important for acceleration
- Fast charge is important as DC fast-charging stations arise. It must be easy to make the cells take charge and not burst.
- Ability to work in all temperatures is a must. Many batteries lose a lot of capacity in the cold.
- Safety if hit by a truck is a factor, or even safety just sitting there.
- Long lifetime, and lifetime-wh affect when you must replace the battery or junk the car
Weight is really important in the electric car because as you add weight, you reduce the efficiency and performance of the car. Double the battery and you don't double the range because you added that weight, and you also make the car slower. After a while, it becomes much less useful to add range, and the heavier your battery is, the sooner that comes.
That's why Tesla makes lithium ion battery based cars. These batteries are light, but more expensive than the heavier batteries. Today they cost around $500/kwh of capacity (all-in) but that cost is forecast to drop, perhaps to $200/kwh by 2020. That initial pack in the Tesla costs $40,000, but they will sell you a replacement for 8 years down the road for just $12,000 because, in part, they plan to pay a lot less in 8 years.