Cadillac adds "super cruise" to product roadmap
Submitted by brad on Sat, 2012-04-21 14:24GM's Cadillac division has reported they plan to release a "super cruise" feature in models mid-decade.
The future of computer-driven cars and deliverbots
GM's Cadillac division has reported they plan to release a "super cruise" feature in models mid-decade.
Today Google released a new 3 minute video highlighting advanced self-driving car use. Here I embed the video, discussion below includes some minor spoilers on surprises in the video. I'm pleased to see this released as I had a minor & peripheral role in the planning of it, but the team has done a great job on this project.
This video includes active operation of the vehicle on not just ordinary streets, by private parking lots for door to door transportation. You can click on it to see it in HD directly on Youtube.
You may not know the name of Continental, but they are a major supplier of components to the big automakers. A story in the Detroit Free Press details their latest project in autonomous driving. This is a VW Passat using radar Automatic-Cruise-Control combined with lane-keeping, similar to projects announced by Mercedes and VW/Audi itself. The story has a video showing the screen of the car displaying its lane-keeping.
A recent article on bicycles and pedestrians in the robocar world appears at the Greater Washington web site, which has taken an interest in robocar topics. In particular they are concerned about the vision of a reservation-based intersection, which does not use traffic signals. These designs from U of Texas got a lot of press in the last few weeks after a presentation at AAAS, but they've been around for years and I have a number of links to them.
The state of Nevada today approved regulations for self-driving cars in the state. Last year, Nevada passed a law outlining the path to these regulations, and their DMV has been working in consultation with Google, car makers and other parties to write them down. Today they were approved, allowing testing, certification and -- someday -- operation of vehicles in the state. Other laws are in consideration in other states inspired by the Nevada move.
A new group has sprung up in the valley around the concept of the open source automobile. I will be speaking at their meetup, which was going to be at Hacker Dojo and has moved to Intel's auditorium. Looks like a good crowd is signed up. Sorry, no deep Google secrets but there will be a video featuring the car and many visions of the future.
Robocars at Silicon Valley Open Source Automotive
This group is about all aspects of computerization in cars.
I'm back from a trip to the Netherlands and Ontario, and there's more to come on that, but the press awakening about robocars continues to grow:
This week, Wired has expanded it's "Let the Robot Drive" series with more articles:
Update: When I first wrote this, I was under the mistaken belief that Better Place only swapped one type of battery module. At present they only support one, but their swap stations are designed to support up to six kinds, as long as they can be loaded and unloaded from below.
BMW has spoken in the past of their Highly Automated Driving project. A new video about ConnectedDrive Connect goes into more details. While BMW insists this is just a research project and won't be in their cars for a long time, they also are expected to soon produce a traffic jam autopilot to compete with the offerings from Mercedes and Audi.
Yesterday I attended the conference on the legal implications of robocars put on by Santa Clara University Law Review. It was a well done conference, with some real content from a varied group of regulators and legal scholars, a sign of how real the robocar world has become.
A new robocar project named "Quasper" has emergence in France from the IRSEEM Esigelec lab and IFSTTAR. This vehicle uses a commercial actuator robot to control the wheel and pedals for drive-by-wire, and features a variety of typical sensors, though it only has a couple of smaller SICK LIDARSs rather than a high resolution LIDAR like the Velodyne used by many other projects. Their work is fairly basic for now.
As expected, there's more news from the Tokyo auto show, which is well known for strange concept cars.
First there is the Toyota Fun Vii
Nissan has announced a new version of their Pivo concept car. The Pivo 3 here's a story with a video offers 4 wheel steering and automatic parking, including a claimed functionality for automated valet parking. In the AVP case, the car requires a special parking lot, though it is not said what changes are needed. A few years ago the Stanford team demonstrated Junior 3 which could valet park in a lot to which it had a map, and which had no civilian pedestrians.
In contrast to the optimism I usually present here, and last week's article about a self-driving Mercedes just a year away it's worth noting this interview with various BMW folks where they provide a much more cautious timeline of at least a decade. Part of their concern comes from the use of computer vision systems.
For the first time, a car company has put a date on shipment of a car with self-driving ability.
According to British site Auto Express, Mercedes has revealed that their 2013 S-class will feature self-driving. Not clear if there is an official company press release, though the company has been talking about such features, as have many other companies. Realize that the 2013 model year is just a year away.
I'm just back from the "ITS World Congress" an annual meeting of people working on "Intelligent Transportation Systems" which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what's of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as "telematics" but things have grown since then.
The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.
Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it's not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There's not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn't depend on infrastructure.
The current approach to safety applications is to have equipped cars transmit status information. Formerly called a "here I am" this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else's car is transmitting that, your car can detect their presence, even if you can't see them. This lets your car detect and warn about things like:
It turns out that intersection collisions are a large fraction of crashes, so there's a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there's only a 1% chance any given collision could be prevented with the system, though it's a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system -- getting data from traffic lights -- already can do a lot to stop an equipped car from going through a red light by mistake.)
Since getting involved with Google's self-driving-car team, I've had to keep silent about its internals, but for those who are interested in the project, a recent presentation at the intelligent robotics conference in San Francisco is now up on youtube. The talk is by Sebastian Thrun (overall project leader) and Chris Urmson, lead developer. Sebastian led the Stanley and Junior teams in the Darpa Grand Challenge and Chris led CMU teams, including BOSS which won the urban challenge.
The list of robocar teams grows again with a new project from Oxford university, led by Paul Newman. Nissan is also involved, though the base vehicle is a Bowler Wildcat off-road vehicle.
Earlier I wrote about the transportation potential of walking robots-of-burden like BigDog. While these robots are not for the long haul, a whole range of options are opened up by a wheeled vehicle that can get to where the road ends, and then lower legs to walk along rough terrain, up stairs and up hills.
Boston Dynamics has gone even further with their latest model, AlphaDog
Copyright © 2024, Brad Ideas
Designed by Zymphonies